Standard Affine Lie Algebra Modules, Vertex Operator Algebras, and the Function $\Delta(H, x)$

Christopher Sadowski
Rutgers University
Department of Mathematics
New Brunswick, NJ
Advisors: William Cook and Yi-Zhi Huang
sadowski@dimax.rutgers.edu
Outline

- Affine Lie algebra background
- Changing the vertex operator algebra module actions with $\Delta(H, x)$
- Results
A vector space (over \(\mathbb{C} \)) \(g \) is called a \textbf{Lie algebra} if \(g \) is equipped with a bilinear map \([\cdot, \cdot] : g \times g \to g \) such that:
A vector space (over \mathbb{C}) \mathfrak{g} is called a Lie algebra if \mathfrak{g} is equipped with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that:

- $[v, v] = 0$ for all $v \in \mathfrak{g}$
A vector space (over \mathbb{C}) g is called a Lie algebra if g is equipped with a bilinear map $[\cdot, \cdot] : g \times g \to g$ such that:

- $[v,v] = 0$ for all $v \in g$
- $[x,[y,z]] = [[x,y],z] + [y,[x,z]]$ for all $x,y,z \in g$ (we call this the Jacobi identity)
A vector space (over \mathbb{C}) g is called a **Lie algebra** if g is equipped with a bilinear map $[\cdot, \cdot] : g \times g \rightarrow g$ such that:

1. $[v, v] = 0$ for all $v \in g$
2. $[x, [y, z]] = [[x, y], z] + [y, [x, z]]$ for all $x, y, z \in g$ (we call this the **Jacobi identity**)

Now, let V be a vector space over \mathbb{C}.
A vector space (over \(\mathbb{C} \)) \(g \) is called a **Lie algebra** if \(g \) is equipped with a bilinear map \([\cdot, \cdot] : g \times g \to g \) such that:

- \([v, v] = 0 \) for all \(v \in g \)
- \([x, [y, z]] = [[x, y], z] + [y, [x, z]] \) for all \(x, y, z \in g \) (we call this the **Jacobi identity**)

Now, let \(V \) be a vector space over \(\mathbb{C} \). We call \(V \) a **\(g \)-module** if \(V \) is equipped with a bilinear map \(\cdot : g \times V \to V \) such that:
A vector space (over \(\mathbb{C} \)) \(g \) is called a **Lie algebra** if \(g \) is equipped with a bilinear map \([\cdot, \cdot] : g \times g \rightarrow g\) such that:

- \([v, v] = 0\) for all \(v \in g\)
- \([x, [y, z]] = [[x, y], z] + [y, [x, z]]\) for all \(x, y, z \in g\) (we call this the **Jacobi identity**)

Now, let \(V \) be a vector space over \(\mathbb{C} \). We call \(V \) a \(g \)-**module** if \(V \) is equipped with a bilinear map \(\cdot : g \times V \rightarrow V \) such that:

- \([[x, y] \cdot v = x \cdot (y \cdot v) - y \cdot (x \cdot v)]\)
A vector space (over \(\mathbb{C} \)) \(g \) is called a **Lie algebra** if \(g \) is equipped with a bilinear map \([\cdot, \cdot] : g \times g \to g\) such that:

- \([v, v] = 0\) for all \(v \in g\)
- \([x, [y, z]] ==[[x, y], z] + [y, [x, z]]\) for all \(x, y, z \in g\) (we call this the **Jacobi identity**)

Now, let \(V \) be a vector space over \(\mathbb{C} \). We call \(V \) a **\(g \)-module** if \(V \) is equipped with a bilinear map \(\cdot : g \times V \to V\) such that:

- \([x, y] \cdot v = x \cdot (y \cdot v) - y \cdot (x \cdot v)\)

Notice, this looks like the Jacobi identity if we rewrite it:

\[x \cdot (y \cdot v) = [x, y] \cdot v + y \cdot (x \cdot v) \]
Overview

We looked at the representation theory (modules) of affine (infinite dimensional) Lie algebras.
We looked at the representation theory (modules) of affine (infinite dimensional) Lie algebras. Affine Lie algebras are “built” on top of finite dimensional simple Lie algebras.
Overview

- We looked at the representation theory (modules) of affine (infinite dimensional) Lie algebras.
- Affine Lie algebras are “built” on top of finite dimensional simple Lie algebras.
- Finite dimensional simple Lie algebras are “built” up from Cartan matrices.
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$.
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a Cartan matrix iff:
Define a matrix \(C = (a_{ij})_{1 \leq i,j \leq \ell} \).

We call \(C \) a **Cartan matrix** iff:

1. For all \(i \), \(a_{ii} = 2 \)
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a Cartan matrix iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
Define a matrix \(C = (a_{ij})_{1 \leq i, j \leq \ell} \).
We call \(C \) a Cartan matrix iff:

- For all \(i \), \(a_{ii} = 2 \)
- For all \(i \neq j \), \(a_{ij} \leq 0 \)
- For all \(i, j \), \(a_{ij} = 0 \) iff \(a_{ji} = 0 \)
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a **Cartan matrix** iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
- For all i, j, $a_{ij} = 0$ iff $a_{ji} = 0$
- C is a positive definite matrix
Define a matrix \(C = (a_{ij})_{1 \leq i, j \leq \ell} \).

We call \(C \) a **Cartan matrix** iff:

- For all \(i \), \(a_{ii} = 2 \)
- For all \(i \neq j \), \(a_{ij} \leq 0 \)
- For all \(i, j \), \(a_{ij} = 0 \) iff \(a_{ji} = 0 \)
- \(C \) is a positive definite matrix

Now, let \(\mathfrak{g} \) be a finite dimensional simple Lie algebra with Cartan matrix \(C \).
Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \).
Notation:

Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \).

- The dimension of \(\mathfrak{h} \) is \(\ell \). We call this the rank of \(\mathfrak{g} \).
Notation:

Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

- The dimension of \mathfrak{h} is ℓ. We call this the rank of \mathfrak{g}.
- We can pick a basis $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$ for the dual space \mathfrak{h}^*.
 We call these elements fundamental roots.
Notation:

Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

- The dimension of \mathfrak{h} is ℓ. We call this the rank of \mathfrak{g}.
- We can pick a basis $\Pi = \{\alpha_1, \ldots, \alpha_\ell\}$ for the dual space \mathfrak{h}^*.
 We call these elements fundamental roots.
- We can pick a basis $\Pi^\vee = \{H_1, \ldots, H_\ell\}$ for \mathfrak{h} such that for all $1 \leq i, j \leq \ell$, we have that $\alpha_i(H_j) = a_{ji}$.

Standard Affine Lie Algebra Modules, Vertex Operator Algebras, and the Function $\Delta(H, x)$ – p. 6
We fix the basis \(\{\lambda_1, \ldots, \lambda_\ell\} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).
Notation:

- We fix the basis \(\{ \lambda_1, ..., \lambda_\ell \} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).
- These \(\lambda_i \)'s are called fundamental weights.
Notation:

- We fix the basis \(\{ \lambda_1, \ldots, \lambda_\ell \} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).

- These \(\lambda_i \)'s are called fundamental weights.

- Define the fundamental coweights \(\{ H^{(1)}, \ldots, H^{(\ell)} \} \subset \mathfrak{h} \) to be the basis dual to \(\{ \alpha_1, \ldots, \alpha_\ell \} \).
The Affinization of \mathfrak{g}

Define $\hat{\mathfrak{g}}$ as follows:

$$\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$$

where c is central and

$$[a \otimes t^m, b \otimes t^n] = [a, b] \otimes t^{m+n} + m \langle a, b \rangle \delta_{m+n,0}c$$

for every $a, b \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$.

$\hat{\mathfrak{g}}$ is the (untwisted) affine Lie algebra associated with \mathfrak{g}.
Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \hat{\mathfrak{h}}^* = (\mathfrak{h} \oplus \mathbb{C}c)^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.
Given \(\lambda \in \mathfrak{h}^* \) and \(k \in \mathbb{C} \), we can define a linear functional \((k, \lambda) \in \hat{\mathfrak{h}}^* = (\mathfrak{h} \oplus \mathbb{C}c)^*\) by the following:

- For all \(h \in \mathfrak{h} \), let \((k, \lambda)(h) = \lambda(h)\).
- On \(\mathbb{C}c \), let \((k, \lambda)(c) = k\).

Recall that \(\lambda_i \ (1 \leq i \leq \ell) \) are the fundamental weights of \(g \). For convenience, let \(\lambda_0 = 0 \). Then, define \(k\Lambda_i = (k, \lambda_i) \) for \(0 \leq i \leq \ell \).
Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \mathfrak{h}^* = (\mathfrak{h} \oplus \mathbb{C}c)^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.

Recall that $\lambda_i \ (1 \leq i \leq \ell)$ are the fundamental weights of \mathfrak{g}. For convenience, let $\lambda_0 = 0$. Then, define $k\Lambda_i = (k, \lambda_i)$ for $0 \leq i \leq \ell$.

$\Lambda_0 = (1, \lambda_0) = (1, 0), \ \Lambda_1 = (1, \lambda_1), \ ... , \ \Lambda_\ell = (1, \lambda_\ell)$ are the fundamental weights for $\hat{\mathfrak{g}}$.

\[\Lambda_0 = (1, \lambda_0) = (1, 0), \ \Lambda_1 = (1, \lambda_1), \ ... , \ \Lambda_\ell = (1, \lambda_\ell) \] are the fundamental weights for $\hat{\mathfrak{g}}$.
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special “highest weight vector”).
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special "highest weight vector").

If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special "highest weight vector").

If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

Likewise, the "nice" (what are called standard or highest weight integrable) irreducible modules for $\hat{\mathfrak{g}}$ are determined by their highest weights $\Lambda = \sum_{i=0}^{l} m_i \Lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$
Standard Modules

- Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special "highest weight vector").

- If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

- Likewise, the “nice” (what are called standard or highest weight integrable) irreducible modules for $\hat{\mathfrak{g}}$ are determined by their highest weights $\Lambda = \sum_{i=0}^{\ell} m_i \Lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

- By $L(\Lambda)$, we mean the irreducible highest weight $\hat{\mathfrak{g}}$-module with highest weight Λ.

Standard Affine Lie Algebra Modules, Vertex Operator Algebras, and the Function $\Delta(H, x)$ – p. 10
Theorem: Let $k \in \mathbb{Z}_{>0}$. Then, $L(k\Lambda_0) = L(k, 0)$ has the structure of a simple vertex operator algebra.
The Simple VOA $L(k\Lambda_0)$

Theorem: Let $k \in \mathbb{Z}_{>0}$. Then, $L(k\Lambda_0) = L(k, 0)$ has the structure of a simple vertex operator algebra. Also, it’s modules (VOA modules) are exactly the standard modules for \hat{g} of level k (i.e. $c \cdot v = kv$).
\(\Delta(H, x) \) and Li’s Theorem

Let \(H = \sum_{i=1}^{\ell} m_i H^{(i)} \) where \(m_i \in \mathbb{Z} \).
Let $H = \sum_{i=1}^{\ell} m_i H^{(i)}$ where $m_i \in \mathbb{Z}$.

Define $\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right)$, where $H(k)$ denotes the action of $H \otimes t^k$.
Δ(H, x) and Li’s Theorem

Let \(H = \sum_{i=1}^{\ell} m_i H^{(i)} \) where \(m_i \in \mathbb{Z} \).

Define \(\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right) \), where \(H(k) \) denotes the action of \(H \otimes t^k \).

Theorem [Li]: For any irreducible \(L(k\Lambda_0) \)-module \(W \), \(W^{(H)} = (W, Y_W(\Delta(H, x) \cdot, x) \) is also an irreducible \(L(k\Lambda_0) \)-module.
Let $H = \sum_{i=1}^{\ell} m_i H^{(i)}$ where $m_i \in \mathbb{Z}$.

Define $\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right)$, where $H(k)$ denotes the action of $H \otimes t^k$.

Theorem [Li]: For any irreducible $L(k\Lambda_0)$-module W, $W^{(H)} = (W, Y_W(\Delta(H, x), x))$ is also an irreducible $L(k\Lambda_0)$-module.

In fact, if $H = \sum_{i=1}^{\ell} m_i H_i$, $(m_i \in \mathbb{Z})$, then W is isomorphic to $W^{(H)}$ as an $L(k\Lambda_0)$-module.
It’s not hard to see that

$$\Delta(H' + H'', x) = \Delta(H', x) \Delta(H'', x)$$

and

$$\Delta(0, x) = Id$$
It’s not hard to see that

\[\Delta(H' + H'', x) = \Delta(H', x) \Delta(H'', x) \]

and

\[\Delta(0, x) = Id \]

So, if we know what each \(H^{(j)} \) does, we know everything!
A Property of $\Delta(H, x)$

- It’s not hard to see that

$$\Delta(H' + H'', x) = \Delta(H', x)\Delta(H'', x)$$

and

$$\Delta(0, x) = Id$$

- So, if we know what each $H^{(j)}$ does, we know everything!
- Let’s see what each the $H^{(j)}$’s do.
While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.
Method

- While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.

- To determine which module we ended up with, we searched for the "new" highest weight vectors.
While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.

To determine which module we ended up with, we searched for the "new" highest weight vectors.

We examined simple Lie algebras by their types, starting with A_n, i.e. algebras of type $sl(n + 1, \mathbb{C})$.
Weight Diagram for A_2

A weight diagram
We found the following

- For A_1, the case of $sl_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.
We found the following

- For A_1, the case of $sl_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.

- For A_2, the case of $sl_3(\mathbb{C})$, we have $L^{(H^{(1)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, (k - a - b)\lambda_1 + a\lambda_2)$ and $L^{(H^{(2)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, b\lambda_1 + (k - a - b)\lambda_2)$.
We found the following

- For A_1, the case of $\mathfrak{sl}_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.

- For A_2, the case of $\mathfrak{sl}_3(\mathbb{C})$, we have $L^{(H^{(1)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, (k - a - b)\lambda_1 + a\lambda_2)$ and $L^{(H^{(2)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, b\lambda_1 + (k - a - b)\lambda_2)$.

- We also worked out the case for $A_3 = \mathfrak{sl}_4(\mathbb{C})$.

Standard Affine Lie Algebra Modules, Vertex Operator Algebras, and the Function $\Delta(H, x)$ – p. 16
We found the following

- For A_1, the case of $sl_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.

- For A_2, the case of $sl_3(\mathbb{C})$, we have $L^{(H^{(1)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, (k - a - b)\lambda_1 + a\lambda_2)$ and $L^{(H^{(2)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, b\lambda_1 + (k - a - b)\lambda_2)$.

- We also worked out the case for $A_3 = sl_4(\mathbb{C})$.

- We also have an idea of how to generalize for A_l, but are yet to determine if it will be fruitful.
We found the following

- Fortunately, the cases of the simple Lie algebras G_2, F_4 and E_8 turned out to be trivial, as the coroot and coweight lattices were equal, so, by Li’s Theorem, Δ takes each module back to itself.
Fortunately, the cases of the simple Lie algebras G_2, F_4 and E_8 turned out to be trivial, as the coroot and coweight lattices were equal, so, by Li’s Theorem, Δ takes each module back to itself.

We also worked out the case for D_4, but it is not listed here, and we have not yet found a pattern for type D.