Outline

Classical Algebras: associative algebras and Lie algebras

Nonclassical Algebras: vertex algebras

Affine Lie algebras and modules

Changing the vertex operator algebra module actions with $\Delta(H, x)$

Results
Classical Algebras

Associative Algebras

and

Lie Algebras
Vector Space (over a field \mathbb{F}):

A **vector space**, V, over a field \mathbb{F} is a set equipped with two operations: vector addition and scalar multiplication such that...

- **Associative** $(u + v) + w = u + (v + w)$ for all $u, v, w \in V$.
- **Identity** There exists $0 \in V$ such that $v + 0 = v = 0 + v$ for all $v \in V$.
- **Inverses** For each $v \in V$ there exists $-v \in V$ such that $v + (-v) = 0 = (-v) + v$.
- **Commutative** $u + v = v + u$ for all $u, v \in V$.
- **Distributive** $c(u + v) = cu + cv$ for all $u, v \in V$ and $c \in \mathbb{F}$.
- **Distributive** $(a + b)v = av + bv$ for all $v \in V$ and $a, b \in \mathbb{F}$.
- **Associative** $(ab)v = a(bv)$ for all $v \in V$ and $a, b \in \mathbb{F}$.
- **Identity** $1v = v$ for all $v \in V$.

Examples:

\mathbb{R}^3 over \mathbb{R}, \mathbb{C}^3 over \mathbb{C}, or $\mathbb{R}[x]$ over \mathbb{R}.
Algebras (over \mathbb{F}):

An Algebra, \mathcal{A}, is a vector space (over some field \mathbb{F}) equipped with a multiplication map: $m : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that m is \textit{bilinear}.

- Instead of writing $m(u, v)$, we usually use juxtaposition to denote multiplication: $m(u, v) = uv$
- \textbf{bilinear} means: for all $u, v, w \in \mathcal{A}$ and $c \in \mathbb{F}$...
 Linear on the Left \hspace*{1em} $(u + v)w = uw + vw$ and $(cu)v = c(uv)$
 Linear on the Right \hspace*{1em} $u(v + w) = uv + uw$ and $u(cv) = c(uv)$
Examples:

Real Matrix Algebras Let $\mathcal{A} = \mathbb{R}^{n \times n}$ be all $n \times n$ matrices with real entries.

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 1 & -1 \end{pmatrix}$$

Polynomial Algebras Let $\mathcal{A} = \mathbb{R}[x, y]$ be all polynomials in two indeterminants (x and y) with real coefficients.

$$(3x^2 + xy + 2)(2y - x) = 6x^2y - 3x^3 + 2xy^2 - x^2y + 4y^2 - 2x$$

Cross Product Algebra Let $\mathcal{A} = \mathbb{R}^3$ here we multiply vectors by taking their cross product: $u \times v$.

$$\langle 1, 2, 3 \rangle \times \langle 1, 0, -1 \rangle = \det \begin{pmatrix} i & j & k \\ 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} = \langle -2, 4, -2 \rangle$$
Special Properties:

Let \(\mathcal{A} \) be an algebra (over some field \(\mathbb{F} \)).

Associative \(\mathcal{A} \) is **Associative** if \(u(vw) = (uv)w \) for all \(u, v, w \in \mathcal{A} \).

Unital \(\mathcal{A} \) is **Unital** or an algebra with **identity** if there exists some \(1 \in \mathcal{A} \) such that \(1v = v1 = v \) for all \(v \in \mathcal{A} \).

Commutative \(\mathcal{A} \) is **Commutative** if \(uv = vu \) for all \(u, v \in \mathcal{A} \).

Examples:

- \(\mathcal{A} = \mathbb{R}[x, y] \) is a commutative associative unital algebra. Its identity is the polynomial 1.
- \(\mathcal{A} = \mathbb{R}^{n \times n} \) is an associative unital algebra, but it is *not* commutative (unless \(n = 1 \)). Its identity is the *identity matrix* \(I_n \).
- \(\mathcal{A} = \mathbb{R}^3 \) equipped with the cross product is a non-associative non-commutative algebra and has no identity. So what kind of algebra is this?
Lie Algebras

Let L be an algebra (over some field \mathbb{F}). Instead of using juxtaposition, let’s denote multiplication with a bracket: $m(u, v) = [u, v]$. L is called a Lie Algebra if the following axioms hold:

Skew-Commutative \([v, v] = 0\) for all \(v \in L\).

Jacobi Identity \([[u, v], w] + [[v, w], u] + [[w, u], v] = 0\) for all \(u, v, w \in L\).

Examples:

- \(A = \mathbb{R}^3\) equipped with the cross product is a Lie algebra. Remember that \(v \times v = 0\) (the cross product of parallel vectors is zero). A tedious calculation shows that the Jacobi identity holds as well.

- If we give the matrix algebra $\mathbb{R}^{n \times n}$ a different multiplication, called the **commutator bracket**, defined by $[A, B] = AB - BA$, it becomes a Lie algebra. To remind ourselves that we are using a different “multiplication” we call this algebra $\mathfrak{gl}(n, \mathbb{R})$.
What do the axioms really say?

- The first axiom, \([v, v] = 0\), implies the following:

\[
0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]
\]

Therefore, \([u, v] = -[v, u]\) (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

\[
[[u, v], w] + [[v, w], u] + [[w, u], v] = 0
\]
Lie Algebras

What do the axioms really say?

- The first axiom, \([v, v] = 0\), implies the following:

\[
0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]
\]

Therefore, \([u, v] = -[v, u]\) (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

\[
[[u, v], w] + [[w, u], v] = -[[v, w], u]
\]
What do the axioms really say?

- The first axiom, \([v, v] = 0\), implies the following:

\[
0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]
\]

Therefore, \([u, v] = -[v, u]\) (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jocobi identity as follows:

\[
[[u, v], w] + [[w, u], v] = [u, [v, w]]
\]
What do the axioms really say?

- The first axiom, $[v, v] = 0$, implies the following:

$$0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]$$

Therefore, $[u, v] = -[v, u]$ (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

$$[[u, v], w] + [[w, u], v] = [u, [v, w]]$$
Lie Algebras

What do the axioms really say?

- The first axiom, \([v, v] = 0\), implies the following:

 \[0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u] \]

 Therefore, \([u, v] = -[v, u]\) (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

 \[[[u, v], w] - [v, [w, u]] = [u, [v, w]] \]
What do the axioms really say?

• The first axiom, $[v, v] = 0$, implies the following:

$$0 = [u + v, u + v] = [u, u + v] + [v, u + v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]$$

Therefore, $[u, v] = -[v, u]$ (almost commutative!)

• The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

$$[[u, v], w] + [v, -[w, u]] = [u, [v, w]]$$
What do the axioms really say?

- The first axiom, $[v, v] = 0$, implies the following:

$$0 = [u+v, u+v] = [u, u+v] + [v, u+v] = [u, u] + [u, v] + [v, u] + [v, v] = [u, v] + [v, u]$$

Therefore, $[u, v] = -[v, u]$ (almost commutative!)

- The Jacobi identity says much more. Using the above property we can re-write the Jocobi identity as follows:

$$[[u, v], w] + [v, [u, w]] = [u, [v, w]]$$
What do the axioms really say?

The Jacobi identity says much more. Using the above property we can re-write the Jacobi identity as follows:

\[
[u, [v, w]] = [[u, v], w] + [v, [u, w]]
\]

\[
\frac{d}{dt} [f(t)g(t)] = \frac{d}{dt} [f(t)] g(t) + f(t) \frac{d}{dt} [g(t)]
\]

Let \(\mathcal{A} \) be an algebra and \(\partial : \mathcal{A} \to \mathcal{A} \). If \(\partial(uv) = \partial(u)v + u\partial(v) \) for all \(u, v \in \mathcal{A} \), then we say that \(\partial \) is a derivation of \(\mathcal{A} \).

The Jacobi identity simply says, “The multiplication operators of \(L \) are derivations.”
Non-Classical Algebras:

Vertex (Operator) Algebras
Origins of Vertex Operator Algebras:

1980s Mathematicians use vertex operators to study certain representations of affine Lie algebras.

1984 I. Frenkel, J. Lepowsky, and A. Meurman construct \mathcal{V}^\natural.

1986 R. Borcherds introduces a set of axioms for a notion which he calls a “vertex algebra”.

The Definition of a Vertex Algebra

Notation:

- $V[x]$ polynomials in x with coefficients in V.
- $V[x, x^{-1}]$ Laurent polynomials in x with coefficients in V.
- $V[[x]]$ power series in x with coefficients in V.
- $V((x))$ lower truncated Laurent series with coefficients in V.
- $V[[x, x^{-1}]]$ Laurent series in x with coefficients in V.

WARNING: $\mathbb{C}[[x, x^{-1}]]$ is not an algebra! Sometimes multiplication isn’t well defined.

Example: $\delta(x) = \sum_{n \in \mathbb{Z}} x^n$ is the formal delta function. Notice that $(\delta(x))^2$ is undefined.
Algebras (over \mathbb{C}):
Let V be a vector space over \mathbb{C}.

Vertex Algebras:
Let V be a vector space over \mathbb{C}.
Algebras (over \(\mathbb{C} \)):
Equip \(V \) with a bilinear map \(\cdot : V \times V \to V \) (a multiplication map).
\[(u, v) \mapsto u \cdot v\]

Vertex Algebras:
Equip \(V \) with **infinitely many** bilinear maps \(n : V \times V \to V \) (where \(n \in \mathbb{Z} \)).
\[(u, v) \mapsto u_n v\]
The Definition of a Vertex Algebra

Algebras (over \(\mathbb{C} \)):
Equip \(V \) with a bilinear map \(\cdot : V \times V \to V \) (a multiplication map).
\[
(u, v) \mapsto u \cdot v
\]

Vertex Algebras:
Equip \(V \) with a bilinear map
\[
Y(\cdot, x) : V \times V \to V[[x, x^{-1}]]
\]
\((V[[x, x^{-1}]] \text{ are Laurent series with coefficients in } V)\).
\[
(u, v) \mapsto Y(u, x)v = \sum_{n \in \mathbb{Z}} u_n v x^{-n-1}
\]
The Definition of a Vertex Algebra

Algebras (over \(\mathbb{C} \)):
Equip \(V \) with a bilinear map \(\cdot : V \times V \rightarrow V \) (a multiplication map).
\[(u, v) \mapsto u \cdot v\]

Vertex Algebras:
Equip \(V \) with a bilinear map
\[Y(\cdot, x) : V \times V \rightarrow V((x))\]
\((V((x))) \) are lower truncated Laurent series with coefficients in \(V \).
\[(u, v) \mapsto Y(u, x)v = \sum_{n \in \mathbb{Z}} u_n v x^{-n-1}\]
where \(u_n v = 0 \) for \(n \gg 0 \).
Algebras (over \mathbb{C}):
To be a Lie algebra V’s multiplication must be skew-symmetric and satisfy the Jacobi identity.
\[(uv)w + (vw)u + (wu)v = 0\]

Vertex Algebras:
V’s vertex operators must satisfy the Jacobi identity.

\[x_0^{-1}\delta\left(\frac{x_1 - x_2}{x_0}\right) Y(u, x_1)Y(v, x_2)w - x_0^{-1}\delta\left(\frac{x_2 - x_1}{-x_0}\right) Y(v, x_2)Y(u, x_1)w\]

\[= x_2^{-1}\delta \left(\frac{x_1 - x_0}{-x_2}\right) Y(Y(u, x_0)v, x_2)w\]
The Definition of a Vertex Algebra

Algebras (over \(\mathbb{C}\)):
To be a Lie algebra \(V\)'s multiplication must be skew-symmetric and satisfy the Jacobi identity.

\[
(ux)x - x(ux) + x(xu) = 0
\]

\[
u(\mathfrak{v}w) = (uv)w + v(\mathfrak{u}w) \quad \text{(the product rule)}
\]

Vertex Algebras:
\(V\)'s vertex operators must satisfy the Jacobi identity.

\[
x^{-1}_0 \delta \left(\frac{x_1 - x_2}{x_0} \right) \mathcal{Y}(u, x_1)(\mathcal{Y}(v, x_2)w) =
\]

\[
x^{-1}_2 \delta \left(\frac{x_1 - x_0}{-x_2} \right) \mathcal{Y}(\mathcal{Y}(u, x_0)v, x_2)w + x^{-1}_0 \delta \left(\frac{x_2 - x_1}{-x_0} \right) \mathcal{Y}(v, x_2)(\mathcal{Y}(u, x_1)w)
\]
Algebras (over \mathbb{C}):
To be a unital algebra V must have an identity vector 1.

\[1u = u1 = u \]

Vertex Algebras:
A vertex algebra has a vaccuum vector 1.

\[Y(1, x)u = u \quad \text{and} \quad Y(u, x)1 = e^{x \mathcal{D}}u \]

In particular, $Y(u, 0)1 = u$.
The Definition of a Vertex Algebra

Algebras (over \(\mathbb{C} \)):

\(V \) is a commutative algebra if...

\[uv = vu \]

Vertex Algebras:

Vertex operators satisfy a property called **locality**.

\[(x_1-x_2)^N Y(u, x_1)Y(v, x_2) = (x_1-x_2)^N Y(v, x_2)Y(u, x_1)\]

for some \(N \gg 0 \).
Algebras (over \mathbb{C}):

V is an associative algebra if...

$$(uv)w = u(vw)$$

Vertex Algebras:

Vertex operators satisfy a property called weak associativity.

$$(x_1 - x_2)^N Y(Y(u, x_1)v, x_2)w = (x_1 + x_2)^N Y(u, x_1 + x_2)(Y(v, x_2)w)$$

for some $N \gg 0$
Holomorphic Vertex Algebras

Let \mathcal{A} be a commutative associative unital algebra (whose identity is 1) and let $D : \mathcal{A} \rightarrow \mathcal{A}$ be a derivation of \mathcal{A}. Define $Y(u, x) = e^{xD}u$. That is:

$$Y(u, x)v = \sum_{n=0}^{\infty} u_{-n-1}vx^n$$

where $u_{-n-1}v = \frac{1}{n!}D^n(u)v$

Then, \mathcal{A} equipped with this vertex operator map, $Y(\cdot, x)$, becomes a vertex algebra with vacuum vector 1.

Note: If $D = 0$, we simply have $Y(u, x)v = uv$. That is: All commutative associative unital algebras are vertex algebras.
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$.
Define a matrix \(C = (a_{ij})_{1 \leq i, j \leq \ell} \).
We call \(C \) a **Cartan matrix** iff:
Cartan Matrices

Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a Cartan matrix iff:

- For all i, $a_{ii} = 2$
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a Cartan matrix iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
Define a matrix $C = (a_{ij})_{1 \leq i,j \leq \ell}$.

We call C a **Cartan matrix** iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
- For all i, j, $a_{ij} = 0$ iff $a_{ji} = 0$
Define a matrix $C = (a_{ij})_{1 \leq i,j \leq \ell}$. We call C a **Cartan matrix** iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
- For all i,j, $a_{ij} = 0$ iff $a_{ji} = 0$
- C is a positive definite matrix
Define a matrix $C = (a_{ij})_{1 \leq i, j \leq \ell}$. We call C a **Cartan matrix** iff:

- For all i, $a_{ii} = 2$
- For all $i \neq j$, $a_{ij} \leq 0$
- For all i, j, $a_{ij} = 0$ iff $a_{ji} = 0$
- C is a positive definite matrix

Now, let g be a finite dimensional simple Lie algebra with Cartan matrix C.
Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.
Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

The dimension of \mathfrak{h} is ℓ. We call this the rank of \mathfrak{g}.
Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

- The dimension of \mathfrak{h} is ℓ. We call this the rank of \mathfrak{g}.

- We can pick a basis $\Pi = \{\alpha_1, ..., \alpha_\ell\}$ for the dual space \mathfrak{h}^*.

We call these elements fundamental roots.
Simple Lie algebras have a “nice” decomposition. We pick a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \).

- The dimension of \(\mathfrak{h} \) is \(\ell \). We call this the rank of \(\mathfrak{g} \).
- We can pick a basis \(\Pi = \{\alpha_1, \ldots, \alpha_\ell\} \) for the dual space \(\mathfrak{h}^* \).
 We call these elements fundamental roots.
- We can pick a basis \(\Pi^\vee = \{H_1, \ldots, H_\ell\} \) for \(\mathfrak{h} \) such that for all \(1 \leq i, j \leq \ell \), we have that \(\alpha_i(H_j) = a_{ji} \).
We fix the basis \(\{\lambda_1, ..., \lambda_\ell\} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).
Notation:

- We fix the basis \(\{ \lambda_1, ..., \lambda_\ell \} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).
- These \(\lambda_i \)'s are called fundamental weights.
We fix the basis \(\{ \lambda_1, ..., \lambda_\ell \} \) which is dual to \(\Pi^\vee \) (i.e. \(\lambda_i(H_j) = \delta_{i,j} \)).

These \(\lambda_i \)'s are called fundamental weights.

Define the fundamental coweights \(\{ H^{(1)}, \ldots, H^{(\ell)} \} \subset \h \) to be the basis dual to \(\{ \alpha_1, ..., \alpha_\ell \} \).
Define \hat{g} as follows:

$$\hat{g} := g \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$$

where c is central and

$$[a \otimes t^m, b \otimes t^n] = [a, b] \otimes t^{m+n} + m \langle a, b \rangle \delta_{m+n,0} c$$

for every $a, b \in g$ and $m, n \in \mathbb{Z}$. \hat{g} is the (untwisted) affine Lie algebra associated with g.

Vertex Operator Algebra Structure of Standard Affine Lie Algebra Modules – p. 33/43
Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \hat{\mathfrak{h}}^* = (\mathfrak{h} \oplus \mathbb{C}c)^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.

Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \hat{\mathfrak{h}}^* = (\mathfrak{h} \oplus \mathbb{C}c)^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C}c$, let $(k, \lambda)(c) = k$.

Recall that $\lambda_i \ (1 \leq i \leq \ell)$ are the fundamental weights of \mathfrak{g}. For convenience, let $\lambda_0 = 0$. Then, define $k\Lambda_i = (k, \lambda_i)$ for $0 \leq i \leq \ell$.
Given $\lambda \in \mathfrak{h}^*$ and $k \in \mathbb{C}$, we can define a linear functional $(k, \lambda) \in \hat{\mathfrak{h}}^* = (\mathfrak{h} \oplus \mathbb{C} c)^*$ by the following:

- For all $h \in \mathfrak{h}$, let $(k, \lambda)(h) = \lambda(h)$.
- On $\mathbb{C} c$, let $(k, \lambda)(c) = k$.

Recall that λ_i ($1 \leq i \leq \ell$) are the fundamental weights of \mathfrak{g}. For convenience, let $\lambda_0 = 0$. Then, define $k \Lambda_i = (k, \lambda_i)$ for $0 \leq i \leq \ell$.

$\Lambda_0 = (1, \lambda_0) = (1, 0)$, $\Lambda_1 = (1, \lambda_1)$, \ldots, $\Lambda_\ell = (1, \lambda_\ell)$ are the fundamental weights for $\hat{\mathfrak{g}}$.
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special “highest weight vector”).
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special “highest weight vector”).

If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special "highest weight vector").

If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

Likewise, the “nice” (what are called standard or highest weight integrable) irreducible modules for $\hat{\mathfrak{g}}$ are determined by their highest weights $\Lambda = \sum_{i=0}^{\ell} m_i \Lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.
Irreducible Representations for \mathfrak{g} are determined by their highest weights (\approx eigenvalue for a special "highest weight vector").

If our module is to be finite dimensional, then the highest weight $\lambda = \sum_{i=1}^{l} m_i \lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

Likewise, the “nice” (what are called standard or highest weight integrable) irreducible modules for $\hat{\mathfrak{g}}$ are determined by their highest weights $\Lambda = \sum_{i=0}^{\ell} m_i \Lambda_i$ where $m_i \in \mathbb{Z}_{\geq 0}$.

By $L(\Lambda)$, we mean the irreducible highest weight $\hat{\mathfrak{g}}$-module with highest weight Λ.
The Simple VOA $L(k\Lambda_0)$

Theorem: Let $k \in \mathbb{Z}_{>0}$. Then, $L(k\Lambda_0) = L(k, 0)$ has the structure of a simple vertex operator algebra.
Theorem: Let $k \in \mathbb{Z}_{>0}$. Then, $L(k\Lambda_0) = L(k,0)$ has the structure of a simple vertex operator algebra. Also, its modules (VOA modules) are exactly the standard modules for $\hat{\mathfrak{g}}$ of level k (i.e. $c \cdot v = kv$).
Let $H = \sum_{i=1}^{\ell} m_i H^{(i)}$ where $m_i \in \mathbb{Z}$.
Let \(H = \sum_{i=1}^{\ell} m_i H^{(i)} \) where \(m_i \in \mathbb{Z} \).

Define \(\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right) \),

where \(H(k) \) denotes the action of \(H \otimes t^k \).
Δ(H, x) and Li’s Theorem

Let \(H = \sum_{i=1}^{\ell} m_i H^{(i)} \) where \(m_i \in \mathbb{Z} \).

Define \(\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right) \),

where \(H(k) \) denotes the action of \(H \otimes t^k \).

Theorem [Li]: For any irreducible \(L(k\Lambda_0) \)-module \(W \), \(W^{(H)} = (W, Y_W(\Delta(H, x) \cdot, x) \) is also an irreducible \(L(k\Lambda_0) \)-module.
Let $H = \sum_{i=1}^{\ell} m_i H^{(i)}$ where $m_i \in \mathbb{Z}$.

Define $\Delta(H, x) = x^{H(0)} \exp \left(\sum_{k=1}^{\infty} \frac{H(k)}{-k} (-x)^{-k} \right)$, where $H(k)$ denotes the action of $H \otimes t^k$.

Theorem [Li]: For any irreducible $L(k\Lambda_0)$-module W, $W^{(H)} = (W, Y_W(\Delta(H, x) \cdot, x)$ is also an irreducible $L(k\Lambda_0)$-module.

In fact, if $H = \sum_{i=1}^{\ell} m_i H_i$, $(m_i \in \mathbb{Z})$, then W is isomorphic to $W^{(H)}$ as an $L(k\Lambda_0)$-module.
It’s not hard to see that

\[\Delta(H' + H'', x) = \Delta(H', x) \Delta(H'', x) \]

and

\[\Delta(0, x) = Id \]
It’s not hard to see that

\[\Delta(H' + H'', x) = \Delta(H', x)\Delta(H'', x) \]

and

\[\Delta(0, x) = Id \]

So, if we know what each \(H^{(j)} \) does, we know everything!
A Property of $\Delta(H, x)$

- It’s not hard to see that

$$\Delta(H' + H'', x) = \Delta(H', x)\Delta(H'', x)$$

and

$$\Delta(0, x) = Id$$

- So, if we know what each $H^{(j)}$ does, we know everything!

- Let’s see what each the $H^{(j)}$’s do.
While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.
While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.

To determine which module we ended up with, we searched for the "new" highest weight vectors.
Method

- While the Δ plays nicely with the VOA structure, it does some strange things to the \hat{g}-module structure.

- To determine which module we ended up with, we searched for the "new" highest weight vectors.

- We examined simple Lie algebras by their types, starting with A_n, i.e. algebras of type $sl(n + 1, \mathbb{C})$.
For A_1, the case of $sl_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.
We found the following

- For A_1, the case of $sl_2(\mathbb{C})$, we have
 $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.

- For A_2, the case of $sl_3(\mathbb{C})$, we have
 $L^{(H^{(1)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to
 $L(k, (k - a - b)\lambda_1 + a\lambda_2)$ and
 $L^{(H^{(2)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to
 $L(k, b\lambda_1 + (k - a - b)\lambda_2)$.
We found the following

- For A_1, the case of $sl_2(\mathbb{C})$, we have $L^{(H^{(1)})}(k, n)$ is isomorphic to $L(k, k - n)$.

- For A_2, the case of $sl_3(\mathbb{C})$, we have $L^{(H^{(1)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, (k - a - b)\lambda_1 + a\lambda_2)$ and $L^{(H^{(2)})}(k, a\lambda_1 + b\lambda_2)$ is isomorphic to $L(k, b\lambda_1 + (k - a - b)\lambda_2)$.

- We have worked out the cases for all finite dimensional simple Lie algebras.
We found the following

Fortunately, the cases of the simple Lie algebras G_2, F_4 and E_8 turned out to be trivial, as the coroot and coweight lattices were equal, so, by Li’s Theorem, Δ takes each module back to itself.
We found the following

- Fortunately, the cases of the simple Lie algebras G_2, F_4 and E_8 turned out to be trivial, as the coroot and coweight lattices were equal, so, by Li’s Theorem, Δ takes each module back to itself.

- For each simple Lie algebra, we obtained “nice” Weyl group elements that determine the new highest weight vector our Δ gives us. Unfortunately, we had to do it case by case for each type, and have yet to find a pattern that will work for any simple Lie algebra.
The End