3- choosability of plane graphs

Josef Cibulka
Jan Hladký
Alexandr Kazda
Bernard Lidický
Eva Ondráčková
Martin Tancer

Vít Jelínek
Planar graph

Is planar Is planar Isn't planar
Coloring of a graph

- **Coloring**

 \[col : V \rightarrow \{1...n\} \]

- **Proper coloring**

 \[\forall uv \in E : col(u) \neq col(v) \]

- **Chromatic number**

 \[\chi(G) = \min \{ \exists \text{ proper coloring } col : V \rightarrow \{1..n\} \} \]
List coloring

- Every vertex has list of possible colors
- Vertex may get color only from its list
- Proper list coloring – no same color on adjacent vertices
- Choosability

\[
\chi_l(G) \quad \min_n \{ \forall \text{ lists } l \forall v \in V : |l(v)| \geq n \exists \text{ proper coloring} \}
\]
Choosability vs. Coloring

∀ \(G : \chi(G) \leq \chi_1(G) \)

∃ \(G : \chi(G) \neq \chi_1(G) \)

\(\chi(G) = 2 \)

\(\chi_1(G) > 2 \)
Our Task, What is known

- Every planar bipartite graph is 3-choosable
- Not every planar graph without triangle is 3-choosable

- Try if some locally bipartite graphs are 3-choosable.