1 Notes, Day 1

On planar graphs, orientations, and contact graphs: for a planar graph where no two vertices in \mathbb{R}^2 have the same y-coordinate, orient any edge uv so that $u \rightarrow v$ where the y-coordinate of v is greater than that of u. In the dual, orient any edge so that they run clockwise from the edges it crosses in the original graph.

(Ex 1) A planar 2-connected graph has a drawing such that its inherited orientation has a single source/sink.

(Ex 2) The dual orientation of a graph is acyclic.

A graph’s vertices can be represented by segments in \mathbb{R}^2, where intersections of segments correspond to adjacency of vertices. It is NP-complete to decide whether a partial representation of segments corresponding to a subgraph of $V(G)$ can be completed.

(Ex 3) A planar bipartite graph is a contact graph of vertical and horizontal segments.

(Ex 4) Find some non-trivial condition on the partial exponentiation to make the above problem P-time solvable.

2 Notes, Day 2 (Robert Samal)

A tournament is a directed graph which without orientation is equivalent to K_n.

(Ex 1) Does there exist a tournament such that for every $v_1, v_2 \in V(G)$, there exists u such that u beats v_1, v_2?

Yes: consider $\Gamma(\mathbb{Z}_7, \{1, 2, 4\})$, where $\Gamma(S, D)$ is the Cayley graph $V(G) = S$, and $u - v \in D \implies u$ beats v in G).

Theorem 1. There exists a tournament such that for every $\{v_1, \ldots, v_k\} \in V(G)$, there exists u such that u beats $\{v_1, \ldots, v_k\}$.

Proof. Choose a random graph on n vertices for sufficiently large n. The number of k-subsets is $\binom{n}{k}$, while the non-existence of a vertex u beating every element in that k-subset is $(1 - 1/2^k)^{n-k}$. It follows that the random graph $G_{n, 1/2}$ has probability at most $\binom{n}{k}(1-1/2^k)^{n-k} \sim n^k (1-\varepsilon)^n \xrightarrow{n \to \infty} 0$.

Explicit construction, consider $p = 4k + 3$ prime, $\Gamma(\mathbb{Z}_p, \{i^2 : i \in \mathbb{Z}_p \setminus \{0\}\})$. \qed
Theorem 2. For all \(n \), there exists a tournament on \(n \) vertices and \(\geq n!/2^{n-1} \) directed Hamiltonian paths.

Proof. Linearity of expectation: \(\mathbb{E}[\text{Hamiltonian paths in } K_n] \) is the number of ordered sequences of \(n \) vertices multiplied by the chance they form a path in that order, with probability \((1/2)^{n-1} \).

For every graph with \(m \) edges, there is a cut with at least \(m/2 \) edges: choose a random set \(U \subseteq V(G) \) and each edge has 1/2 probability of being in the cut (either two vertices in \(U \) or \(V(G) \setminus U \)) or each in one.

Theorem 3. Dominating sets (a set \(U \) such that \(\forall v \notin U, \exists u \in U : uv \in E(G) \)): for a probability \(0 < p < 1 \), there exists a dominating set \(U \) of size \(\leq np + n(1-p)^{\delta+1} \); choose \(p = 1 - \sqrt[\delta+1]{1/2} \) optimal.

Proof. Make the vertices have Bernoulli distribution with \(p \) to be in \(U \); the expected size of \(U \) is \(np \). Its expected non-neighbor set is \((1-p)^{\deg v_i+1} \leq (1-p)^{\delta+1} \); thus the expected size of the non-neighbors is \(n(1-p)^{\delta+1} \).

\[\text{Theorem 2: } n \rightarrow \frac{n!}{2^{n-1}} \text{ Hamiltonian paths.} \]

\[\text{Theorem 3: } \forall v \notin U, \exists u \in U : uv \in E(G), p = 1 - \sqrt[\delta+1]{1/2} \text{ optimal.} \]

3 Notes, Day 3 (Pavel Valtr)

Define a \(k \)-hole to be a convex polygon \(P \) whose vertices are the vertices of a plane drawing of a graph, such that the interior of the polygon contains no other vertices. Erdos conjectured that for every \(k \) there is a sufficiently large number of points \(m \) for which there at least one \(k \)-hole; this was shown false for \(k = 7 \). Let \(f_k(m) \) be the number of \(k \)-holes in \(P \).

Theorem 4. \(f_1(P) - f_2(P) + f_3(P) - f_4(P) + \cdots = 1. \)

For a cycle, this is equivalent to the binomial theorem. Move a point slowly and see what happens, double check when 3 points become collinear.

Theorem 5. \(f_1(P) - 2f_2(P) + 3f_3(P) - 4f_4(P) + \cdots = |P \cap \text{int} \text{conv } P| \).

Theorem 6. The number of special triangles is \(n^2 - 5n + |\text{conv } P| + 4 \); thus number of 3-holes is at least \(n^2 - 5n + 7 \).

A special triangle here is one in which we draw the triangle and a horizontal line through the point with the highest \(y \)-coordinate, and such that the two regions defined by the horizontal line and the line through the other two vertices of the triangle define a region containing no vertices. The proof involves showing that the number of special triangles is preserved under rotation; then move a point to outside of convex hull and rotate so that point appears on bottom when it is passing through lines.

4 Notes, Day 4 (Vit Jelinek)

Let \(O(x), E(x) \) be the generating function for the number of ordered partitions of an integer \(n \) into an odd number of parts and even number of parts, respectively. Then \(O(x) = \frac{x(1-x)}{1-2x} = 1 + \sum_{i=2}^{\infty} 2^{i-2} x^i \) and \(O(x) + E(x) = \frac{1}{1-2x} = 1 + \sum_{i=2}^{\infty} 2^{i-1} x^i \). We can also consider a bijection to the set of subsets of even and odd size of \([n]\).

We say a string \(\alpha > \beta \in \{0,1\}^k \) if \(\alpha \) has a higher expected chance of appearing before \(\beta \). Prove or disprove:

Ex 1 \(\alpha > \beta \iff \mathbb{E}[T_{\alpha}] > \mathbb{E}[T_{\beta}] \) (expected waiting times).

False: say, consider 000 and 100 for the first direction, and 100 and 110 for the second direction.

Ex 2 \(> \) is a transitive relation.

False: say, consider 001, 010, 100
5 Notes, Day 5 (Jiri Fiala)

Combinatorial embeddings and primal dual circle packing.

6 Problems

(Ex 1) For any graph G, evaluate $\mathcal{S} = \sum_{s: V(G) \to \{\pm 1\}} \prod_{v, v_j \in E(G)} s(v_i)s(v_j)$.

$$\sum_{s: V(G) \to \{\pm 1\}} \prod_{v, v_j \in E(G)} s(v_i)s(v_j) = \sum_{s: V(G) \to \{\pm 1\}} \prod_{v \in V(G)} s(v)^{\deg v}.$$

If every vertex of G is even-degreed, then $\mathcal{S} = 2^{|V(G)|}$; otherwise wlog $2 \nmid \deg v_1$, so

$$\mathcal{S} = \sum_{s: v \in \{\pm 1\}} \prod_{v \in V(G), i > 1} s(v_i)^{\deg v_i} = 0.$$

(1) How large of a tournament is necessary such that every k-tuple is beaten?

Discussed in notes.

(2) Any tournament has an odd number of hamilton paths.

(3) Find an algorithm that outputs a cut in a given graph with at least half of the edges.

Let $U_1 \sqcup U_2 = V(G)$ be a random partition of $V(G)$, and now repeat the following operation: if $v \in U_i$ satisfies $\deg_{U_i} v > \frac{1}{2} \deg v$ for $i = 1, 2$, then move v into the other set U_{3-i}. This algorithm terminates because $|\delta(U_1)|$ is a strictly increasing invariant bounded by $|E(G)|$, and at termination we have that

$$|\delta(U_1)| = |E(G)| - \frac{1}{2} \sum_{v \in V(G)} \deg v = \frac{|E(G)|}{2}.$$

(4) Let $(\Omega, 2^\Omega, P)$ be a finite probability space in which all elementary events have the same probability. Show that if $|\Omega|$ is a prime number then no two nontrivial events (distinct from \emptyset, Ω) can be independent.

Any elementary event has probability n/p for some integer $0 < n < p$. Independence implies there exists three events with probabilities $a/p, b/p, c/p$ satisfying $c/p = (a/p)(b/p) \implies c = \frac{ab}{p}$, contradiction since $p \nmid ab$.

(5) Determine the expected length of the initial increasing sequence of a random permutation of $[n]$. What is the limit for $n \to \infty$?

Let L denote the length of the initial increasing sequence of a random permutation of $[n]$. It follows that

$$\mathbb{E}[L] = \sum_{k=1}^{n} P[L \geq k] = \frac{1}{n!} \sum_{k=1}^{n} \binom{n}{k} (n-k)! = \sum_{k=1}^{n} \frac{1}{k!}.$$
This is the partial sums of the expansion of \(e^x - 1 \) at \(x = 1 \), so the limit as \(n \to \infty \) is \(e - 1 \).

(6) Determine the probability that 1 and 2 are in the same cycle of a random permutation \(\pi \) of \([n]\).

Let \(C(1) \) denote the cycle of 1 under \(\pi \). Then \(P[|C(1)| = m] = \left(\frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdots \frac{n-m+1}{n-m+2} \right) \cdot \frac{1}{n-m+1} = \frac{1}{n} \) for any \(1 \leq m \leq n \), whence \(\mathbb{E}[2 \in C(1)] = \sum_{m=1}^{n} \frac{1}{n} \cdot \frac{m-1}{n-1} = \frac{1}{2} \).

Alternatively, bijection.

(7) We toss a fair coin \(n \times \). What is the expected number of “runs” (sets of consecutive tosses with the same result)?

Let \(X_n \) be the expected number of runs for \(n \) tosses; then we see \(X_n = X_{n-1} + \frac{1}{2} \), \(X_1 = 1 \Rightarrow X_n = \left\lceil \frac{n}{2} + 1 \right\rceil \).

(8) Show that for \(m \) large and \(n > m(\ln n + 5) \), a random mapping \(f : [n] \to [m] \) is surjective with probability at least 0.99.

By counting arguments/induction,

\[
P[f \text{ surjective}] = \frac{1}{m^n} \sum_{i=1}^{m} (-1)^{m-i} \binom{m}{i} i^n \geq 1 - m \left(1 - \frac{1}{m} \right)^n \simeq 1 - me^{-n/m} = 1 - e^{-5} > 0.99.
\]

(9) Let \(A \) be a random \(n \times n \) matrix of \(\pm 1 \) with same probability, mutually independent. Find \(\mathbb{E}[\det(A)], \mathbb{E}[\det(A)^2] \).

For the first, consider the operation which flips the sign of all elements in the first row of \(A \); this is an involution with no fixed points on \(\mathcal{M}_{n \times n}(\pm 1) \) which maps \(\det(A) \mapsto -\det(A) \). Hence \(\mathbb{E}[\det(A)] = 0 \).

For the second,

\[
\mathbb{E}[\det(A)^2] = \mathbb{E} \left[\left(\sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)} \right)^2 \right]
= \mathbb{E} \left(\sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i,\sigma(i)}^2 \right) + 2 \cdot 0 = \binom{n}{2}.
\]

(10) The \(n \)-coupon collector problem.

The expected number of coupons to collect is \(n \sum_{i=1}^{n} \frac{1}{i} \); one gains the \(n \)th new coupon with probability \(\frac{n-m+1}{n} \), and use a geometric distribution for each new coupon.

(11) For \(d \) sufficiently large, there is a set \(S \) in \(d \)-dimensional Euclidean space with more than \(2d - 1 \) points s.t. all angles determined by triples of points of \(S \) are smaller than \(\pi/2 \).
Here is an argument that should give a much stronger bound: consider the 2^d vertices of a d-dimensional hypercube; any triple of vertices defines angles which are at most 90°. Given three vertices, wlog one at the origin, then the dot product of the other two vertices must be 0 to form a right angle at the origin. Equivalent, for each coordinate, we either assign 1 to the coordinate of the second vertex, the third vertex, or neither; hence there are 3^d such possibilities. There are 2^d vertices and hence $6^d / (2^d 3^d) \approx (3/4)^d$ probability of picking a triplet with a right angle. So the chance that choose $2^d - 1$ of those vertices with no right angle is $(1 - (3/4)^d)^{2^d - 1} \geq 1 - (2d - 1)(3/4)^d \to 1$ by Bernoulli’s inequality etc.

(12) Any 4-uniform hypergraph with 14 edges is 2-colorable.

(13) Let $H = (V, E)$ be a r-uniform hypergraph. Show that there exists an r-coloring of V such that at least $(r!/r^r)|E|$ edges have all r colors.

(14) For a permutation $\pi : [n] \to [n]$ let $L(\pi)$ be the longest increasing subsequence of π.

(15) Any 4-uniform hypergraph with 14 edges is 2-colorable.

(17) Let $G_{n,p}$ be a random graph on n vertices with edge probability p. Show that if $p \in (0, 1)$ is independent of n then $G_{n,p}$ is connected almost surely. What is the smallest function $p(n)$ for which you can still show that $G_{n,p(n)}$ is connected almost surely?

Define $U_k = \{ v_1, v_2, \ldots, v_k \}$, so $U_n = V(G)$. Let $\delta(U)$ be the cut of U (e.g., number of edges between U and $V(G) \setminus U$). Then, $G_{n,p}$ is connected if and only if $|\delta(U_i)| > 0$ for $i = 1, 2, \ldots, n - 1$. The probability that $P[|\delta(U_i)| = 0] = (1 - p)^{(n-i)}<(1 - p)^{n-1}$. Thus,

$$P[G_{n,p} \text{ connected}] \geq (1 - P[|\delta(U_i)| = 0])^{n-1} \geq 1 - (n - 1)(1 - p)^{n-1}$$

by Bernoulli’s inequality. For any $\varepsilon > 0$ and sufficiently large n we have $(1 - p)^{n-1} < \frac{\varepsilon}{n-1}$, so $G_{n,p}$ is “usually” (almost surely?) connected. This argument still works as long as $p(n) > 1 - \left(\frac{\varepsilon}{n-1} \right)^{1/(n-1)}$.